SSC CHSL 2021121)The value of \(\frac{\tan 50^\circ + \sec 50^\circ}{\cot 40^\circ + \text{cosec} \ 40^\circ}\)\( + cos^265° \)\(+ sin 65° cos 25°\)\( + tan 30°\) is:
\(\frac{6+\sqrt{3}}{3}\)
SSC CHSL 2021122)If \(cos\theta ={\sqrt3\over2}\), then the value of \(\frac{2 - \sin^2 θ}{1 - \cot^2 θ}\) + (sec2θ + cosecθ) is:
\(\frac{59}{24}\)
SSC CHSL 2021123)If \( \cos \theta = \frac{P^2-1}{P^2+1}\), \(0^{\circ}<\theta<90^{\circ}\), then cosec θ is equal to:
\(\frac{1+P^2}{2P}\)
SSC CHSL 2021124)If 7 sin2 θ + 3 cos2 θ = 4, 0° < θ < 90°, then the value of θ will be:
30°
SSC CHSL 2021125)The value of \(\frac{3 \tan^2 60^{\circ}+ \sec^2 30^{\circ}- \sin^2 45^{\circ}}{(\cos 15^{\circ}+ \sin 75^{\circ})(\sec15^{\circ}+ cosec 75^{\circ})}\) is:
\(\frac{59}{24}\)
SSC CHSL 2021126)For A = 30°, find the value of: \(\frac{-3\sin^22A+2\sec^2A-\tan\frac{3A}{2}}{\frac{1}{3}\sin3A}\)
\(-\frac{7}{4}\)
SSC CHSL 2021127)If \(cos\theta={7\over3\sqrt6}\) and θ is an acute angle, then the value of \(27\sin^2 \theta-\frac{3}{2}\) is:
1°
SSC CHSL 2021128)Find the value of θ, if sec2 θ + (1 - √3) tan θ - (1 + √3) = 0, where θ is an acute angle.
SSC CHSL 2021129)If cosec2 θ (cos θ - 1)(1 + cos θ) = k, then what is the value of k?
-1
SSC CHSL 2021130)Evaluate the following expression.
\(\frac{\tan^2 60^{\circ}+ cosec\: 30^{\circ}\sin 90^{\circ}+3 \sec^230^{\circ}}{4 \sin^2 45^{\circ}+ \sec^2 60^{\circ} - \cot^2 30^{\circ}-5 \cos^290^{\circ}}\)
3