271)If \(sec^2θ+tan^2 = 7\), then the value of θ where 0° ≤ θ ≤ 90° is

272)If \(7sin^2θ+3cos^2 θ = 4\) (0° ≤ θ ≤ 90°), then value of θ is

Correct Option: C

** π/6**

273)If \(\alpha+\theta= {7 \pi \over 12}\) and tanθ = √3, then the value of tanα is

Correct Option: D

1

274)sin (A+B) = 1 and cos (A-B) = √3/2, where A & B are positive acute angles with A ≥ , then A and B are:

Correct Option: B

A = 60°, B = 30°

275)If \(2sin^2 \theta-3sin\theta + 1 = 0;\) θ being positive acute angle(s), then the value of θ is/are

Correct Option: A

30°, 90°

276)If sin\({(60°-\theta)}\)=cos\({(\psi-30°)}\), then the value of tan \({(\psi-\theta)}\) is {assume that \(\theta\) and \(\psi\) are both positive acute angels with \(\theta<60°\) and \(\psi>30°)\).

Correct Option: C

\( \sqrt{3} \)

277)Evaluate: 3 cos 80° cosec 10° + 2 cos 59° cosec 31°

278)If \({ sec^270° -cot^220°\over2{(cosec^259°-tan^231°)} }= {2 \over m}\)then m is equal to:

279)If \(\alpha+\beta=90°\) , then the value of \({(1-sin^2\alpha)(1-cos^2\alpha)*(1+cot^2\beta)(1+tan^2 \beta)}\) is.

280)If \(sin21°={x\over y}\), then \(sec21°-sin69°\) is equal to

Correct Option: A

\(x^2\over{y}\sqrt{y^2-x^2}\)

showing 271 - 280 results of 310 results