261)If \(\sec^2θ = 3\), 0° < θ < 90°, then the value of \(tan^2θ - cosec^2θ \over tan^2θ + cosec^2θ\) is :
1/7
262)If \(tan^2θ = 1-e^2\) , then the value of \(secθ + tan^3 θ.cosecθ\) is:
263)If \(cos\theta = {p \over \sqrt {p^2+q^2}}\), then the value of tanθ is
\(q \over p\)
264)If \(sin \theta = {a \over b}\), then the value of secθ - cosθ is where 0° < θ < 90°
\(a^2 \over {b \sqrt{b^2-a^2}}\)
265)Find the value of \(cot30°+cot75°+cot45°-sin90°+sin45° \over sin60°+cos30°+ tan15°+cos45°\)
266)If \({xcosec^230°. sec^245° \over 8 cos^245°.sin^260° } = tan^260°- tan^230°,\) then the value of x is:-
1
267)The value of x in the equation \(tan^2{π\over 4}-cos^2{π\over 3} = x sin{π\over 4}.cos{π\over 4}.tan{π\over 3}\) is:-
268)The value of cos1°. cos2°.cos3°..........cos179° is
269)If tan (θ1 + θ2) = √3 and sec (θ1 - θ2) = 2/√3 , then the value of sin2θ1 + tan3θ2 is equal to (assume 0°< θ1 - θ2 < θ1 + θ2 < 90°
270)If secθ + tanθ = √3 (0° ≤ θ ≤ 90°) then the value of tan3θ = ?