291)\(({{sinA + sinB }\over {cosA+cosB}})+({{cosA-cosB} \over{sinA-sinB}})\) is equal to:
0
292)\(\sqrt{sec^2 \theta+cosec^2\theta}\) is equal to
293)If cosecθ - cotθ = \({1 \over a}\), then \( {a^2-1 \over a^2+1}\) is
294)If sinθ + sin2θ + sin3θ = 1, then cos6θ - 4cos4θ + 8cos2θ is
295)sin 3 θ+cos3θ = 0, then the value of θ is
296)a.sinθ + b.cosθ = c, then find the value of a.cosθ - b.sinθ
297)\(\rm \frac{cosA+cosB}{sinA-sinB}=\)
298)If tan A = 1/2 and tan B = 1/3, then the value of A + B is
299)The value of sin 50° – sin 70° + sin 10° is equal to
0
sin 50° – sin 70° + sin 10°
= sin(60° – 10°) – sin(60° + 10°) + sin 10°
Using the formulas
sin(A – B) = sin A cos B – cos A sin B
sin(A + B) = sin A cos B + cos A sin B, we get;
sin 50° – sin 70° + sin 10° = sin 60° cos 10° – cos 60° sin 10° – sin 60° + cos 10° – cos 60° sin 10° + sin 10°
= -2 cos 60° sin 10° + sin 10°
= -2 × (1/2) × sin 10° + sin 10°
= – sin 10° + sin 10°
= 0
300)If \(sin (30° + θ) = {3 \over \sqrt{12}}\) then cos2θ is
¾