SSC CHSL 2021131)In a triangle ABC, right-angled at C, if \(sec A={13\over5}\), then find the value of \(\frac{1+ \sin A}{\cos B}\).
SSC CHSL 2021132)If sinθ + cosecθ = 7, then what is the value of sin3θ + cosec3θ?
322
SSC CHSL 2021133)If \({sin^2\theta\over tan^2\theta-sin^2\theta}=5\), then the value of \(\frac{24\cos^2\theta-15\sec^2\theta}{6\ \rm cosec^2 \theta-7\cot^2\theta}\) is:
SSC CHSL 2021134)If 3 cot A = 4 tan A and A is an acute angle, then what will be the value of sec A ?
\(\frac{\sqrt7}{2}\)
SSC CHSL 2021135)What is the value of \(\frac{\cos^2 20^{\circ}+\cos^2 70^{\circ}}{\sin^2 90^{\circ}}\)\(-\tan^2 45^{\circ}\) ?
0
SSC CHSL 2021136)If √13 sin θ = 2, then the value of \(\frac{3\tan \theta+\sqrt{13} \sin\theta}{\sqrt{13} \cos \theta - 3\tan \theta}\) is:
4
SSC CHSL 2021137)If cos2θ - sin2θ - 3 cos θ + 2 = 0, \(0^0<\theta<90^0\), then what will be the value of sec θ - cos θ?
\(\frac{3}{2}\)
SSC CHSL 2021138)If \(\frac{\cot \theta + \cos \theta}{\cot \theta - \cos \theta}\) \(=\frac{k+1}{1-k}\), \(k \ne 1\), then k is equal to:
sinθ
SSC CHSL 2021139)If 5 cos θ = 4 sin θ, 0° ≤ θ ≤ 90°, then what will be the value of sec θ?
\(\frac{\sqrt{41}}{4}\)
SSC CHSL 2021140)If \({cosec^2\theta\over cosec^2\theta-cot^2\theta}={13\over4}\), \(0^0<\theta<90^0\), then the value of \(\frac{52 \cos^2 \theta-9 \tan^2 \theta}{18 \sec^2 \theta + 8 \cot^2 \theta}\) will be:
\(\frac{8}{11}\)