SSC CHSL 2021141)In a right-angled triangle ABC right angled at C, sin A = sin B. What is the value of cos A?
\(\frac{1}{\sqrt2}\)
SSC CHSL 2021142)For what value of θ (in degrees) is the following equation true?
\( sin 3θ cos θ - cos 3θ sin θ ={1\over2}\), \(0<\theta<{\pi\over2}\)
15
SSC CHSL 2021143)The value of \( \frac{cos 8^\circ \ cos 24^\circ \ cos 60^\circ \cos 66^\circ \ cos 82^\circ}{sin 82^\circ sin 66^\circ \ sin 60^\circ \ sin 8^\circ \ sin 24^\circ}\) is:
\(\frac{1}{\sqrt{3}}\)
SSC CHSL 2021144)If \( sin B =\frac{9}{41}\) , then what is the value of cot B, where 0° < B < 90°?
\(\frac{40}{9}\)
SSC CHSL 2021145)If \(tan\theta ={4\over3}\), then the value of \(\frac{9\sin \theta+12\cos \theta}{27\cos \theta-20\sin \theta} \) will be equal to:
72
SSC CHSL 2021146)Evaluate the following expression.
\( \frac{3(\cot^2 46^{\circ}-\sec^2 44^{\circ})}{2(\sin^2 28^{\circ}+\sin^2 62^{\circ})}+\)\(\frac{2\cos^2 60^{\circ}\tan^2 33^{\circ}\tan^2 57^{\circ}}{\sec^2(90^0-\theta)-\cot^2 \theta}\)
-1
SSC CHSL 2021147)For θ : 0° < θ < 90°
3 sec θ + 4 cos θ = 4√3, find the value of (1 - sin θ + cos θ).
\(\frac{1+\sqrt3}{2}\)
SSC CHSL 2021148)If sin2 x - 3cos2 x = 0, then the value of x (0 < x < 90°) is:
60
SSC CHSL 2021149)If \({5cot\theta+\sqrt3cosec\theta\over 2\sqrt3coesec\theta+3 cot\theta}=1\), \(0^0<\theta<90^0\), then the value of \(\frac{\frac{7}{2} \cot^2 \theta- \frac{3}{4} \:cosec^2 \theta}{4 \sin^2 \theta+\frac{3}{2} \tan^2 \theta}\) will be:
SSC CHSL 2021150)The value of \(\sqrt{\cos 60^{\circ} \cos 30^{\circ}- \sin60^{\circ} \sin 30^{\circ}}\) is:
0