SSC CHSL 202181)If 5sin2θ = 3(1 + cosθ), 0° < θ < 90°, then the value of cosecθ + cotθ is:
\(\sqrt{\frac{7}{3}}\)
SSC CHSL 202182)If \(\frac{4sin^2\theta + 5}{4sin^2\theta-1}\) , then the value of is:
9
SSC CHSL 202183)If \(0^0<\theta<90^0\), then \(\frac{{\left( {1 - \sin\theta } \right)\left( {\sec\theta + \tan\theta } \right)\tan\theta }}{{\left( {\tan\theta + \sec\theta + 1} \right)\left( {\cot\theta - \text{cosec} \ \theta + 1} \right)}} = ?\)
SSC CHSL 202184)If \(tan A=\frac{{1.1}}{{6}}\) then what is the value of (4cos A - 7sin A)? Given that A is an acute angle.
\(2\frac{{41}}{{61}}\)
SSC CHSL 202185)If \(\rm \frac{3 \sqrt 3 \sec θ + 4 \tan θ}{3 \tan θ + \sqrt 3 \sec θ} = 2\), 0° < θ < 90°, then the value of cos θ will be:
\(\frac{1}{2} \)
SSC CHSL 202186)Solve the following equation.
2 cos2 θ + (4 + √3)sin θ - 2(1 + √3) = 0 where θ is an acute angle.
60°
SSC CHSL 202187)What number should be subtracted from
4(sin460° + cos430°) - (tan245° - cot230°) + cos245° - cosec245°+ sec260° to get 2 ?
7
SSC CHSL 202188)If θ is an acute angle and sinθ = cosθ, then the value of 2 tan2θ + sin2θ - 1 is equal to:
\(\rm \frac{3}{2}\)
SSC CHSL 202189)If A lies between 45° and 540°, and sin A = 0.5, what is the value of A/3 in degrees?
SSC CHSL 202190)If \(cosθ = \rm \frac{2}{3}\) , then 2 sec2θ + 2 tanθ - 6 equals:
1