SSC CGL 201921)The value of \({sin\theta+cos\theta-1\over sin\theta-cos\theta+1}\times\)\({ tan^2\theta(cosec^2\theta-1)\over sec\theta-tan\theta}\) is :
SSC CGL 201922)If \({sin\theta\over1+cos\theta}+\)\({1+cos\theta\over sin\theta}\)\(={4\over \sqrt3}\), \(0^0<\theta<90^0\), then the value of \((tan\theta+sec\theta)^{-1}\) is :
\(2-\sqrt3\)
\({{sin^2θ+1+cos^2θ+2cosθ} \over sinθ(1+cosθ)}={4 \over √ 3}\)
⇒ \({sinθ = }{√ 3 \over 2}\), θ = 60°
SSC CGL 201923)If \({1+sin\theta\over1-sin\theta}={p^2\over q^2}\), then \(sec\theta\) is equal to :
\({1\over2}({q\over p}+{p\over q})\)
SSC CGL 201924)The value of \(sec\theta(1-sin\theta)(sin\theta+cos\theta)(sec\theta+tan\theta)\over sin\theta(1+tan\theta)+cos\theta(1+cot\theta)\) is equal to :
SSC CGL 201925)The value of \((tan^2\theta+cot^2\theta-sec^2\theta cosec^2\theta)\) is equal to :
-2
SSC CGL 201926)\((sec\theta-tan\theta)^2(1+sin\theta)^2\div sin^2\theta=?\)
\(cot^2\theta\)
SSC CGL 201927)If \(3(cot^2\theta-cos^2\theta)=cos^2\theta\), \(0^0<\theta<90^0\), then the value of \((tan^2\theta+cosec^2\theta+sin^2\theta)\) is :
SSC CGL 201928)If \({sin^2\theta-3sin\theta+2\over cos^2}=1\), where \(0^0<\theta<90^0\), then what is the value of \((cos2\theta+sin3\theta\)\(+cosec2\theta)\) ?
\(9+4\sqrt3\over6\)
SSC CGL 201929)The value of \(sin(78^0+\theta)-cos(12^0-\theta)+(tan^270^0-cosec^220^0)\over sin25^0cos65^0+cos25^0sin65^0\) is :
SSC CGL 201930)The value of \(\sqrt{cosec\theta-cot\theta\over cosec\theta+cot\theta}\)\(\div {sin\theta\over1+cos\theta}\) is equal to :