SSC CHSL 2021101)If 3(sec2θ + tan2θ) = 5, 0° < θ < 90°, then the value of cosec θ is:
2
SSC CHSL 2021102)If 21 tan θ = 20, then(1 + sin θ - cos θ) : (1 - sin θ + cos θ) is equal to:
14 ∶ 15
SSC CHSL 2021103)Simplify the following expression.
cos2 30° + cos2 40°+ cos2 50° + cos2 60°
2
SSC CHSL 2021104)If 5k = tanθ and \({5\over k}= sec\theta\), then what is the value of \(10\left(k^2-\frac{1}{k^2}\right) \) ?
\(-\frac{2}{5}\)
SSC CHSL 2021105)If sin θ( 2 sin θ + 3) = 2, 0° < θ < 90°, then what is the value of (sec2 θ + cot2 θ - cos2 θ)?
\(\frac{43}{12}\)
SSC CHSL 2021106)If \(\sin θ=\frac{11}{15} \), then the value of (sec θ - tan θ) is:
\(\frac{\sqrt{26}}{13}\)
SSC CHSL 2021107)\(\frac{(1+\cos \theta)(cosec \theta-\cot \theta)\sec \theta}{\sin \theta(1-\sin\theta)(\sec \theta+\tan \theta)}=?\)
sec2 θ
SSC CHSL 2021108)If 3cos2θ - 4sinθ + 1 , 0° < θ < 90°, then the value of 3cos2θ + 5tan2θ will be:
\(5\frac{2}{3}\)
SSC CHSL 2021109)If \(sin\theta={2\sqrt{ab}\over a+b}\), a > b > 0, then the value of \( \frac{cos\theta + 1}{cos \theta - 1}\) will be:
\(-\frac{a}{b}\)
SSC CHSL 2021110)The value of \(\frac{3cos^227^\circ-5 + 3cos^263^\circ }{tan^232^\circ + 4 - cosec^2 58^\circ} \)\(+ sin35°cos55° \)\(+ cos35°sin55°\) is:
\(\frac{1}{3}\)