SSC CHSL 2021111)Solve the following equation.
2√3 sin2 θ + cos θ – √3 = 0 where θ is an acute angle.
30°
SSC CHSL 2021112)If \(\rm \sec\left(90^{\circ}-\frac{3θ}{2}\right)=\sqrt2\) , 0° < θ < 90°, then the value of 2sinθ + 4cos2θ will be:
3
SSC CHSL 2021113)If \( \rm \frac{\sin θ+\cos θ}{\sin θ-\cos θ}=3\), then the value of sin4 θ - cos4 θ is equal to:
\(\frac{3}{5}\)
SSC CHSL 2021114)If \(cosθ = \frac{4x}{1 + 4x^2}\), then what is the value of sin θ ?
\(\frac{1 - 4x^2}{1+4x^2}\)
SSC CHSL 2021115)If (sin A - cos A) = 0, then what is the value of cot A?
1
SSC CHSL 2021116)If \(cosecθ = \frac{41}{9}\) and θ is an acute angle, then the value of 5 tan θ will be:
\(\frac{9}{8}\)
SSC CHSL 2021117)Solve the following equation and find the value of θ.
3cot θ + tan θ - 2√3 = 0, 0 < θ < 90°
60°
SSC CHSL 2021118)In Δ ABC, ∠A = 90°, AB = 20 cm and BC = 29 cm. What is the value of (sinB – cotC)?
\(- \frac{189}{{580}}\)
SSC CHSL 2021119)If 2cos2θ = 3 (1 – sinθ), 0° < θ < 90°, then what is the value of (tan2θ + cosec3θ - sec2θ)
\(\sqrt 3 - 1\)
SSC CHSL 2021120)If tan x = cot (48° + 2x), and 0° < x < 90°, then what is the value of x?
14°