SSC CHSL 2021111)Solve the following equation.

2√3 sin^{2}θ + cos θ – √3 = 0 where θ is an acute angle.

Correct Option: C

30°

SSC CHSL 2021112)If \(\rm \sec\left(90^{\circ}-\frac{3θ}{2}\right)=\sqrt2\) , 0° < θ < 90°, then the value of 2sinθ + 4cos2θ will be:

Correct Option: A

3

SSC CHSL 2021113)If \( \rm \frac{\sin θ+\cos θ}{\sin θ-\cos θ}=3\), then the value of sin

^{4}θ - cos^{4}θ is equal to:

Correct Option: B

\(\frac{3}{5}\)

SSC CHSL 2021114)If \(cosθ = \frac{4x}{1 + 4x^2}\), then what is the value of sin θ ?

Correct Option: B

\(\frac{1 - 4x^2}{1+4x^2}\)

SSC CHSL 2021115)If (sin A - cos A) = 0, then what is the value of cot A?

Correct Option: A

1

SSC CHSL 2021116)If \(cosecθ = \frac{41}{9}\) and θ is an acute angle, then the value of 5 tan θ will be:

Correct Option: B

\(\frac{9}{8}\)

SSC CHSL 2021117)Solve the following equation and find the value of θ.

3cot θ + tan θ - 2√3 = 0, 0 < θ < 90°

Correct Option: C

60°

SSC CHSL 2021118)In Δ ABC, ∠A = 90°, AB = 20 cm and BC = 29 cm. What is the value of (sinB – cotC)?

Correct Option: C

\(- \frac{189}{{580}}\)

SSC CHSL 2021119)If 2cos

^{2}θ = 3 (1 – sinθ), 0° < θ < 90°, then what is the value of (tan2θ + cosec3θ - sec2θ)

Correct Option: C

\(\sqrt 3 - 1\)

SSC CHSL 2021120)If tan x = cot (48° + 2x), and 0° < x < 90°, then what is the value of x?

Correct Option: B

14°

showing 111 - 120 results of 310 results