71)If in a triangle, value of length of two sides are 4cm, 5cm & angle between them is 60°, then what is the length of third side (in cm)
√21
Let third side be x cm
\(cos60^0 = {4^2 +5^2 -x^2 \over 2 \times 4\times 5} \) ; solving we get
x = √21
SSC CHSL 202172)If \(cosec θ = \frac{\sqrt 5}{2}\) , then what will be the value of (sec θ + tan θ - cot θ sin θ) ?
\(2 + \frac{4\sqrt 5}{5}\)
SSC CHSL 202173)If \(8sin^2θ + 2cosθ = 5\), 0° < θ < 90°, then the value of \(tan^2θ + sec^2θ - sin^2θ\) will be:
\(\frac{305}{144}\)
SSC CHSL 202174)If 3cot2x - 7cosec2x + 7 = 0, then the value of x(0 ≤ x ≤ 90°) is:
90°
SSC CHSL 202175)What is the value of sin² 60° + tan² 45° + sec² 45° - cosec² 30° ?
\(-\frac{1}{4}\)
SSC CHSL 202176)If 2 tanx + 3 cotx = 5, then the value of 4 tan2x + 9 cot2x is:
13
SSC CHSL 202177)2 cos θ + sec θ - 2√2 = 0, where θ is an acute angle. Find the value of θ.
45°
SSC CHSL 202178)In ΔABC, if ∠B = 90°, AB = 21 cm and BC = 20 cm, then \(\rm \frac{1 \space +\space sinA \space -\space cosA}{1 \space + \space sinA \space + \space cosA} \) is equal to:
\(\frac{2}{5}\)
SSC CHSL 202179)If \(\rm secθ = \frac{65}{63}\) and θ is an acute angle, then the value of 8(cosecθ - cotθ) is:
1
SSC CHSL 202180)If cotθ = √2 + 1, then cosecθsecθ = ?
2√2